II. Microbial degradation of chemical waste, an alternative to physical methods of waste disposal

Chemical wastes and their biodegradation - an overview

by O. Ghisalba

Central Research Laboratories, Ciba-Geigy Ltd, CH-4002 Basel (Switzerland)

The Global 2000 Report points out that: 'Unless there are very significant structural changes in the world's economies, increased economic activity can be expected to produce larger quantities of waste materials and more residual wastes. Whether these residual wastes actually enter the environment as pollutants depends on policies for, and expenditures on, environmental protection. The projected economic growth will have one of two effects (or a combination of both): increased release of wastes and pollutants into the environment or increased costs of keeping the waste and pollution out of the environment ... unless there are innovations in production processes, by which 'wastes' are recycled and used (as in the pulp and paper industry, which now uses 'waste' as an energy source)'1.

More than 5 million chemical compounds were described in Chemical Abstracts by the year 1980. Some 45,000 substances (as such, or in a vast variety of mixtures) are traded worldwide, and 70,000 are in US commerce. Some 1000 new chemicals are brought on the market annually. 150 chemicals are produced in excess of 50,000 tons per annum. The total world production of synthetic organic chemicals is estimated at 300 million tons per year. Ecotoxicological data are available for less than 1000 compounds 1, 10, 19, 20.

The contributions of different countries to the world production of chemicals (data from 1974) are: USSR 11.3%; USA 23.8%; Japan 9.8%; U.K. 5.9%; France 5.3%; Germany (FRG) 9.2%; and other countries 34.7%²⁰.

The dangers arising from the environmental exposure to chemicals and their decomposition products and the effects and hazards they cause are not known for the majority of the commercially traded substances²⁰. Environmental chemicals have been defined as 'substances which enter the environment through human activities and which can appear in such concentrations that they become hazardous to living things, in particular man himself. Among these substances are chemical elements and/or compounds of organic and inorganic nature, of natural and/or synthetic origin. The human activities may be direct or indirect, deliberate or accidental. The term living things encompasses human beings and their environment, including animals, plants and microorganisms'²⁰.

Waste disposal in the chemical industry

The production of specialities such as dyestuffs, pigments, drugs, agrochemicals etc. is generally associated with the formation of large amounts of undesired by-products and wastes. These wastes (transformation losses, solvents, auxiliary chemicals, by-products, catalysts etc.) amount to about 50-60% of the raw materials used and cause a wide range of environmental problems⁴. The chemical composition of such wastes is often rather complex and involves a large number of compounds. For the disposal of chemical wastes the following strategies are generally applied⁴:

- Improvement and modification of production processes and plants: reduction of wastes by recycling of acids, salts and gases; reduction of transformation losses; improved reaction specificities; simplified product isolation.
- Chemical hydrolysis (esters etc.).
- Thermal oxidation e.g. high-temperature incineration of organic or aqueous process effluents (high specific energy consumption).
- Wet-air oxidation in a reaction chamber at 280 °C/120 bar where a stream of atmospheric oxygen with or without catalyst serves to oxidize pollutants. In this process the heat of reaction is recovered and used for pre-heating the input to the reaction temperature. The oxidation yield is generally very high (over 98%).
- Microbial oxidation or biodegradation:
- Degradation in sewage treatment plants.
- Biodegradation with spezialized (salt tolerant) microorganisms in pure or mixed cultures.
- Development or isolation of fast growing microorganisms with wide spectra of biodegradative activities.

For more detailed information on advantages and disadvantages of the methods of disposal listed above, refer to Bretscher⁴.

In this review I shall concentrate on biological processes for waste disposal and try to summarize which chemical pollutants are relevant and what is known about their biodegradability. I shall exclude information on the wastes from pulp and paper industries (refer to Gasche⁷).

Priority pollutants according to the US Environmental Protection Agency (EPA)

The behavior of toxic pollutants in the environment depends on a variety of chemical processes (such as hydrolysis, photolysis, oxidation, reduction, hydration etc.), physical- or transport processes (sorption, volatilization etc.) and biological processes (bioaccumulation, biotransformation, biodegradation). Literature on these processes was collected and evaluated by the US Environmental Protection Agency for a selection of 129 specific compounds and elements. EPA published a two-volume report 'Water-Related Environmental Fate of 129 Priority Pollutants' (1979)⁵.

The 9 pollutant groups evaluated in the EPA study were: metals and inorganics, pesticides, PCB's and related compounds, halogenated aliphatic hydrocarbons, halogenated ethers, monocyclic aromatics, phthalate esters, polycyclic aromatic hydrocarbons, nitrosamines and miscellaneous compounds. The data provided by the EPA study consist of hard experimental facts, comparisons with related compounds but also model-based assumptions. Therefore, reliability of the data is not always high. According to EPA statistics from 1980^{16,18} based on over 3100 analyzed individual effluent samples from a total of 35 industrial categories and subcategories, those pollutants observed with highest frequency are: phthalates (ubiquitous), chloroform (37% of samples), methylene chloride (36%), benzene (26%), toluene (28%), phenol (24%), ethylbenzene (15%), naphthalene (10%), phenanthrene/anthracene (10%), tetrachloroethylene (10%), trichloroethylene (10%) and trichloroethane (11%).

Patterson and Kodukala published a complementary biodegradation study on the 114 organic priority pollutants from the EPA list (without cyanide, asbestos and the 13 metals)¹⁶.

The organic priority pollutants are generally considered to be toxic. The extent of toxicity is a function of both the relative toxicity and the absolute concentration of the individual pollutant¹⁶. The biological processes observed during the classical biological treatment of an industrial waste mixed with sewage, or in soil and surface waters, depend on mixed and complex communities of microorganisms. In aerobic or anaerobic biological waste treatment processes priority pollutants can yield different types of responses or combinations thereof:

- Inhibition and deterioration of the overall treatment efficiency.
- Non-biodegradability: compound passes unchanged through the system.
- Biochemical conversion → formation of different compounds, not necessarily simpler ones.
- Biodegradation (mineralization) \rightarrow CO₂, H₂O, nitrate, sulfate, biomass.

- Acclimatization/degradation → population shift or adaption.
- Sorption onto soil particles, primary sludge etc.
- Volatilization.

In treatment systems it is difficult to distinguish the relative importance of biotransformation, biodegradation, acclimatization, sorption and volatilization (stripping), as all these processes result in the disappearance of the investigated compound from the soluble phase in the treatment system! Therefore, the disappearance of a pollutant does not necessarily mean that the compound is really biodegraded. This restriction may explain the contradictory statements quite often found in the literature, and therefore also in table 1 of this review. For some of the pollutants biosorption factors for sludge have been reported 16. Furthermore, a treatment system may readily acclimatize to and biodegrade a particular compound present at low concentrations, whereas a higher concentration might be toxic. In natural aquatic systems the small numbers of microorganisms present may not be able to metabolize even small concentrations of pollutants fast enough to prevent long-term toxicity to higher organisms.

Table 1 is a compilation of the most important facts extracted from EPA documents, but also from other sources^{2,3,5,6,11–18,21–23,25}.

Further important pollutants not included in the EPA list

One of the most important sources for the EPA report⁵ was a paper by Thom and Agg²⁵ from the British Department of the Environment. In this report pollutants were divided into the following 3 groups: easily biodegraded substances; resistent substances; and substances which may be removed if suitable acclimatization can be achieved. The study by Thom and Agg²⁵ comprises information on the removal during biological treatment processes of more than 200 compounds considered to be the most important synthetic organic chemicals of concern in the UK from the standpoint of water pollution.

Another important source for the EPA report⁵ was a study by Tabak et al.²⁴ on the microbial metabolism of aromatic compounds. Bacteria (Pseudomonas, Flavobacterium, Achromobacter and Xanthomonas sp.) from soil and related environments were selected or adapted (206 isolates) to metabolize and utilize phenol, hydroxyphenols, nitrophenol, chlorophenols, methylphenols, alkylphenols and arylphenols as the sole source of carbon. A phenol-adapted culture was then tested for utilization of 104 compounds (respirometric experiments) in concentrations of 100–500 ppm.

Data from these and other sources are compiled in table 2.

Table 1. Environmental fate and biodegradation of priority pollutants (EPA selection)

Abbreviations: IE, pollutant detected in industrial effluents^{5,16,18}; R, pollutant detected in the Rhine river¹²; V, volatilization; S, sorption; CS, chemical speciation; T, transport downstream; P, photolysis; H, hydrolysis; O, oxidation and photooxidation; BA, bioaccumulation; BM, biomagnification;

BCF, bioconcentration factor; LOC, compound is among the 100 leading organic compounds (US-production in 1970: 2.4·10³ to 3.4·106 tons/year)³; R–XY, rank among the top 50 in 1981 (US-market: $5.3\cdot10^5$ to $13\cdot10^6$ tons/year; the list also includes inorganic compounds) 14

Name of the priority pollutant (EPA) ⁵	Occur- rence/im- portance 3,5,12,14, 16,18	Physical and chemical processes in the environ- ment ⁵	biomagnification ⁵	Biotransformation/ biodegradation in natural aquatic envi- ronments ⁵ or by cul- tures of organisms isolated from such en-			Removal in biological treatment sys tems ¹⁶		Predicted biode- gradability for biological treat- ments ²⁵
				vironments ¹¹	and 5 polluta	mg/l of ant ^{l6}	uo	tests	
					1st culture % degrad.	4th culture % degrad.	Concentration (µg/ml)	% removal (number of tests)	
Metals and inorganics									
Antimony		S, T, CS	Slight BA, BCF 40 (fish), 16,000 (invertebrates)	Methylation may oc- cur, oxidation by <i>Sti-</i> <i>biobacter senarmonti</i>					
Arsenic	R	V,S,T,CS	Slight BA, BCF 333 (fish, inverte- brates, plants), toxic	Methylation and reduction by <i>Methanobacterium</i> or fungi, yeasts					
Asbestos		T	No evidence	No evidence					
Beryllium		S, T, CS	Slight BA, no BM, BCF 100 (fish, inverte- brates, plants)	No evidence					
Cadmium	R	S,T,CS	Strong BA, BCF 1000–250,000, highly toxic	Klebsiella aerogenes can be adapted to Cd→CdS ²					
Chromium		S,T,CS	BA, BCF 400- 4000, essential nu- trient	Probably not important					
Copper		S,T,CS	BA, BCF 700– 1700, essential nu- trient, no BM	No evidence					
Cyanide	IE	V,P,CS	No BA, toxic	Biodegraded at low concentration by al- most all microor- ganisms					
Lead		S, T, CS	BCF 60-200	Methylation					
Mercury	R	V,S,T,CS,P	BCF 1000- 100,000	Methylation and reduction					
Nickel		S, T, CS	BCF 100-400, algae 40,000	No evidence Ni-enzymes known					
Selenium		S,T,CS	BCF 400–800 Se-Met, Se-Cys	Utilized by <i>Bacillus</i> sp. SS ¹⁵					
Silver		S, T, CS	BCF 200-10,000, toxic	Not important					
Thallium		S, T, CS	Strong BA, BCF 100,000-150,000, inhibits photo- synthesis	No evidence					
Zinc		S, T, CS	Strong BA, BCF 2000–100,000	More than 25 Zn- containing enzymes identified so far					
Pesticides			n .1.11	0:1-7 1 1 1			N		
Acrolein		No data ev. P	Probably not sig- nificant	Oxidation, hydration, biodegradable by unknown pathway	≥ 90		No da	ta	
Aldrin	R	S, V, (P)	BCF 1000-10,000	Aldrin→dieldrin epoxidation by most organisms	0	0	_	100(1)	Not degraded
Chlordane	R	S, V, (P)	BCF 1000-10,000	Normally persistent, utilized as a substrate by Aspergillus niger	0	0	No da tends i centra sludge	to con- te in	

Table 1: continuation 1

pollutant (EPA) renef cheinical importance cheinical importanc				Table	1: continuation 1					
DDD (Dichle- rodiphenyldichloro- telthane)	Name of the priority pollutant (EPA) ⁵	rence/ impor- tance 3,5,12,14,	chemical processes in the environ-		biodegradation in natural aquatic envi- ronments ⁵ or by cul- tures of organisms isolated from such en-	acclima degrada studies settled tic sewa and 5 r	ation/ ation with domes- age mg/l of	logical treatment systems 16		gradability for biological treat-
DDD (Dichle- rodiphenyldichloro- telthane)								Concentratio (μg/ml)	% removal number of to	
tried phenyldichloro- whethene) DDT (Dichlo- rodiphenyltrichloro- ordinance) R, LOC V, S, (P), BCF up to 10 ⁸ DDF—DDD, DDE by many organisms, complete mineral- ization with Fuscarium or any operand from the concentrate in sludge (1) Dieldrin R V, S, P BCF 100-10,000 Pegradation to CO, reported for bacteria and fungilian and endo- sulfan sulfate Endosulfan and endo- sulfan sulfate Endosulfan and endo- sulfan sulfate BCF 1000-10,000 Degradation to CO, reported for bacteria and fungilian sulfate Endosulfan and endrin al- dehyde Endosulfan and endrin al- R P BCF 1000-10,000 Degradation to CO, reported for bacteria and fungilian sulfate Endrin and endrin al- dehyde Endrin and endrin al- R P BCF 1000-10,000 Somerazian of the sulface and endosulfinanticant Enderin and endrin al- dehyde Endrin and endrin al- dehyde Endrin and endrin al- R P BCF up to 10,000 Oxidized to its epox- rice in soil and metabo- indicate to its epox- rice in soil and metabo- indicate to its epox- rice in soil and metabo- indicate to its epox- rice in soil and metabo- indicate to its epox- rice in soil and metabo- indicate to its epox- rice in soil and metabo- indicate to its epox- rice in sludge (1) No data No data No data No data FERDER S S BCF 100-10,000 No evidence 0 0 No data Not degraded indicate 1 P Not likely to be important Endosulfan and endor in al- dehyde not ylation by soil bacter 1 P Not likely to be important Endosulfan and endor in al- dehyde not ylation by soil bacter 2 P Not likely to be important Endosulfan and endorin al- dehyde not ylation by soil bacter 2 P Not degraded by soil microor service in sludge (1) No data Reparation in sludge (1) No data R	DDD (Dichlorodiphenyldichloroethane)	R	V,S		tive dechlorination			0.20 tends trate i	3 17–100 to concen-	
by many organisms, complete mineral ization with Fuserium oxysporum! Dieldrin R V.S.P. BCF 100–10,000 Degradation to CO ₂ reported for bacteria and fungil' probably not significant mideral midera	DDE (Dichlorodiphenyldichloroethene)	R	V,S,P	,	tive dechlorina-	0	0	Tends centra	to con- te in	
Endosulfan and endosulfan sulfate Possibly not significant Possibly	DDT (Dichlorodiphenyltrichloroethane)	R, LOC		BCF up to 10^6	by many organisms, complete mineralization with <i>Fusarium</i>	0	0	centra	to con- te in	Not degraded
Fate and endosulfand	Dieldrin	R	V,S,P	BCF 100-10,000	reported for bacteria	0	0	centra	to con-	Not degraded
Heptachlor R V, S, P, H BCF up to 10,000 Oxidized to its epoxolized to chlordene etc. 13 Heptachlor epoxide R (S) BCF 100-10,000 No evidence O 0 0 No data Hexachlorcyclohexanes R S BCF 10-500, not important or important P-Hexachlorcyclohexane (Lindane) R S BCF 10-300, not important or important R S S BCF 10-300, not important or important P Not likely to be important TCDD (Dioxin) S, V BCF 100-10,000 Very slow! 7 TCDD (Dioxin) S, V BCF 100-10,000 Very slow! 7 TCXaphene S, V BCF 100-10,000 Very slow! 7 PCB's and related compounds POlychlorinated bi- R S, V, P BCF up to 106 Only important for those with fewer than 4 chlorines per molecule Alcaligenes, Actinobacter, Actinobacter, Actinobacter, Actinobacter and beautiful and beautif	Endosulfan and endosulfan sulfate	R	V,S,P,H,O	probably not sig-	fate and endosulfan- diol or lactone by soil	0	0	No da	ıta	
ide in soil and metabolized to chlordene etc. 13 Heptachlor epoxide R (S) BCF 100–10,000 No evidence 0 0 No data Hexachlorcyclohexanes R S BCF 10–500, not important	Endrin and endrin aldehyde	R	P	BCF 1000-10,000	rination and hydrox- ylation by soil bacte-	Aldehy		No da	ıta	
Hexachlorcyclohexanes R (α, β, δ-BHC isomers) S BCF 10-500, not important $(\alpha, \beta, \delta - BHC isomers)$ S BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ $(\alpha, \beta, \delta - BHC)^{13}$ BCF 10-300, not important $(\alpha, \beta, \delta - BHC)^{13}$ $(\alpha, \beta, \delta - BHC)^{13$	Heptachlor	R	V, S, P, H	BCF up to 10,000	ide in soil and metab- olized to chlordene	0	0	6.3	76(1)	
important important stridium sphenoides (α -BHC) important α -BHC important α -BHC α	Heptachlor epoxide	R	(S)	BCF 100-10,000	No evidence	0	0	No da	ata	
important by different bacteria, utilized and degraded by soil microorganisms as the sole carbon source (anaerobic) Isophorone P Not likely to be important TCDD (Dioxin) S, P BCF up to 10,000 Very slow¹7 Not tested No data Toxaphene S, V BCF 1000−10,000 Reduction, dechlorination (anaerobic), rel. persistent PCB's and related compounds Polychlorinated biphenyls S, V, P BCF up to 106 Only important for those with fewer than 4 chlorines per molecule Alcaligenes, Activation bacter Achromobacter 2-Chloronaphthaline P, (S) Probably a short term process sole carbon source by soil bacteria, chlorosalicylate as metabo- Tends to concentent sludge (1) Tends to concentent sludge (1) S-10 0−33(2) Not tested No data Not degraded trate in sludge Tends to concentent sludge (1) Tends to co		s R	S		stridium sphenoides	0	0			Not degraded
TCDD (Dioxin) S, P BCF up to 10,000 Very slow¹7 Not tested No data 1242:37 66 1254:11 0 1248: 0 0 1248: 0 0 1210: 0 0 1016:44 48 2-Chloronaphthaline P, (S) Probably a short term process Sole carbon source by soil bacteria, chlorosalicylate as metabo-	γ-Hexachlorcyclo- hexane (Lindane)	R	S	,	by different bacteria, utilized and degraded by soil microor- ganisms as the sole carbon source (an-	0		centra	to con-	Not degraded
Toxaphene S, V BCF 1000–10,000 Reduction, dechlorination (anaerobic), rel. persistent PCB's and related compounds Polychlorinated bi- R phenyls S, V, P BCF up to 10 ⁶ Only important for those with fewer than 4 chlorines per molecule Alcaligenes, Actinobacter, Achromobacter 2-Chloronaphthaline P, (S) Probably a short term process Sole carbon source by soil bacteria, chlorosalicylate as metabo- Not tested No data Tend to concen- Not degraded trate in sludge 1242:37 66 1254:11 0 1248: 0 0 1210: 0 0 1016:44 48 2-2-2000 50–100(4)	Isophorone		P	•	Possibly oxidation	≥ 90		3–10	0-33(2)	
nation (anaerobic), rel. persistent PCB's and related compounds Polychlorinated bi- R S, V, P BCF up to 10 ⁶ Only important for those with fewer than 4 chlorines per molecule Alcaligenes, Actinobacter, Achromobacter, Achromobacter, Achromobacter active 2-Chloronaphthaline P, (S) Probably a short term process Sole carbon source by soil bacteria, chlorosalicylate as metabo-	TCDD (Dioxin)		S, P	BCF up to 10,000	Very slow ¹⁷	Not te	sted	No da	ata	
Polychlorinated bi-phenyls R S, V, P BCF up to 10 ⁶ Only important for those with fewer than 4 chlorines per molecule Alcaligenes, Actinobacter, Achromobacter 2-Chloronaphthaline P, (S) Probably a short term process P, (S) Probably a short term process Only important for those with fewer than 4 chlorines per molecule Alcaligenes, Actinobacter, Achromobacter 1242:37 66 1254:11 0 1248: 0 0 1210: 0 0 1016:44 48 2-2000 50-100(4)	Toxaphene		S, V	BCF 1000-10,000	nation (anaerobic),	Not te	sted	No da	ıta	
those with fewer than 4 chlorines per mole- cule Alcaligenes, Acti- nobacter, Achromo- bacter 2-Chloronaphthaline P, (S) Probably a short term process sole carbon source by soil bacteria, chloro- salicylate as metabo- trate in sludge trate in sludge 1248: 0 0 1210: 0 0 1016:44 48 2-2000 50-100(4)		•								
term process sole carbon source by soil bacteria, chlorosalicylate as metabo-	Polychlorinated bi- phenyls	R	S, V, P	BCF up to 10 ⁶	those with fewer than 4 chlorines per mole- cule Alcaligenes, Acti- nobacter, Achromo-	1254:1 1248: 1210:	1 0 0 0 0 0			Not degraded
	2-Chloronaphthaline		P, (S)	•	sole carbon source by soil bacteria, chloro- salicylate as metabo-	≥ 90		2–200	0 50-100	(4)

Table 1: continuation 2

			Table	1: continuation 2					
Name of the priority pollutant (EPA) ⁵	Occurrence/importance 3,5,12,14, 16,18	Physical and chemical processes in the environ- ment ⁵	Bioaccumulation/ biomagnification ⁵	Biotransformation/ biodegradation in natural aquatic envi- ronments ⁵ or by cul- tures of organisms isolated from such en- vironments ¹¹	tic sew	ation/ lation with domes- rage mg/l of	logical systems		Predicted biode- gradability for biological treat- ments ²⁵
					1st culture % degrad.	4th culture % degrad.	Concentration (µg/ml)	% removal (number of tests)	
Halogenated aliphatic h	ydrocarbo	ns						100	
Chloromethane (Methyl chloride)	LOC	V, (P), O	Probably not sig- nificant	Probably not degraded by microorganisms ²²	Not te	sted		> 91 y removed oping (1)	
Dichloromethane (Methylene chloride)	IE, R, LOC	V, (P), O	Probably not sig- nificant	Utilized by strains of <i>Pseudomonas</i> and <i>Hy-phomicrobium</i> as the sole carbon source ^{22,23}	≥ 90		Inhibits	digestion	Should be degraded
Trichloromethane (Chloroform)	IE, R, LOC	V,(P),O	No evidence, possibly weak to moderate BA, no BM	Probably only slow degradation by microorganisms ^{22,23}	49	100	4–2600 Inhibits digestic sludge ²	s anearobic on of	Should be degraded
Tetrachloromethane (Carbon tetrachloride)	R,LOC	V,P	No BM	Probably only very slow degradation by microorganisms ^{22,23}	87	100	95-250 Inhibit digestic sludge ²	s anaerobic on of	Should be degraded
Chloroethane (Ethyl chloride)	LOC	V,(P),O,H	Probably not sig- nificant	No evidence, perhaps at very slow rates, anaerobic?	Not te	sted	Yes ¹¹		
1, 1-Dichloroethane (Ethylidine chloride)	R	V, (P), O	Probably not sig- nificant	No evidence, perhaps at very slow rates ^{22,23}	50	91	1.7–7.1	6-92(3)	
1,2-Dichloroethane (Ethylene dichloride)	R,LOC, R-17	V,(P),O	Probably not sig- nificant	Utilized by mixed cultures as the sole carbon source ²²	26	63		s anaerobic on of	Should be degraded
1, 1, 1-Trichloroethane (Methyl chloroform)	R,LOC	V,(P),O	Probably not sig- nificant	No evidence, perhaps at very slow rates ²² , anaerobic?	29	83	9–1800	70-99(5)	Should be degraded
1, 1, 2-Trichloroethane	IE, R	V,(P),O	Probably not sig- nificant	No evidence, perhaps at very slow rates, anaerobic?	6	44	11	> 9(1)	
1, 1, 2, 2-Tetrachloro- ethane	R	V,(P),O	Possible, but importance not assessed	No evidence ²²	0	29	12.8	> 22(1)	Should be degraded
Hexachloroethane	R	(V),(P)	Possible, but importance not assessed	No evidence	≥ 90		No dat	a	
Chloroethene (Vinyl chloride)	IE, R, LOC, R-21	V,O	Probably not sig- nificant	Evidence for persistence	Not te	ested	No dat	ca	
1, 1-Dichloroethene (Vinylidene chloride)	R	V,O	Probably not sig- nificant	Probably at very slow rate	78	100	43.2	97(1)	
1,2-trans Dichloro- ethene	R	v,o	Probably not sig- nificant	Probably at very slow rate	67	95	Yes ¹¹		
Trichloroethene (Trichloroethylene)	IE, R, LOC	V,O	Possible, but probably not important; no BM	Metabolized by higher organisms →dichloroacetate which is degraded by microorganisms	64	87	60120	73-90(3)	Should be degraded
Tetrachloroethene (Perchloro-ethylene)	IE, R, LOC	V,O	BCF 100, no BM	Metabolized by higher organisms trichloroacetate which is degraded by microorganisms	45	87		60–99 (5) extrated in BCF 6	Should be degraded
1,2-Dichloropropane (Propylene chloride)	IE, R	V,(S),O	Possible, but no evidence	Utilized as a carbon source by some soil microorganisms (slowly)	42	89	16	> 67(1)	Should be degraded

			Table	1: continuation 3			·		
Name of the priority pollutant (EPA) ⁵	Occurrence/importance 3,5,12,14, 16,18	Physical and chemical processes in the environ- ment ⁵	Bioaccumulation/biomagnification ⁵	Biotransformation/ biodegradation in na- tural aquatic environ- ments ⁵ or by cultures of organisms isolated from such environ- ments ¹¹	tic sew	ation/ ation with domes- age mg/l of	Removal gical treat systems 16 (hg/ml)		Predicted biode gradability for biological treat ments ²⁵
1,3-Dichloropropene	R	V,(S),O,H	Probably not important	Utilized as a carbon source by some soil microorganisms (slowly)	55	85	Yes ¹¹		
Hexachlorobutadiene (HCBD)	IE, R	S, V	BA may be significant; no BM BCF up to 1000	Very persistent	≥ 90		No data		
Hexachlorocyclo- pentadiene (HCCPD)	IE	S, V, P, H, (O)	BCF 300-2000	Slightly metabolized but no products iden- tified	≥ 90		No data		
Bromomethane (Methyl bromide)		V,H,O	Not significant	Probably not signifi- cant	Not te	sted	No data		
Bromodichloro- methane		(V),(S)	Possible, but no evidence	Some invertebrates seem to metabolize halogenated methanes and halogens	35	59	54	> 99	
Dibromochloro- methane	IE	(V),(S)	Possible, but no evidence	As bromodichloro- methane	25	39	81	> 99	
Tribromomethane (Bromoform)		(V),O	Possible, but no evidence	Tribromomethane oc- curs naturally in sea- weed (Asparagopsis), therefore possibly me- tabolized by some mi- croorganisms	11	48	910	89(1)	
Dichlorodifluoro- methane (Freon-12)	LOC	V,P	No evidence	No evidence, persistent, volatility probably precludes biodegradation	Not te	sted	No data		
Trichlorofluoro- methane (Freon-11)	LOC	V,P	Possibly not sig- nificant	As Freon-12 probably not degradable ²²	59	73	48-920	19–99 (3)
Halogenated ethers									
Bis(chloromethyl) ether (BCME)		(V),O,H	· · · · · · · · · · · · · · · · · · ·	Not likely to be a competing process	Not te	sted	59	83(1)	
Bis(2-chloroethyl) ether		(V),O, H	Probably not important	Possibly after accli- mation	≥ 90		0.12–19	47-92(2)	1
Bis(2-chloroisopropyl) ether	IE	(V),O,H	Probably not important	No evidence	85	100	0.16–2	0-62(2)	
2-Chloroethyl vinyl ether	IE	V,(S), O , H	Probably not important	Persistence is expected	76	100	No data		
4-Chlorophenyl phenyl ether		(V),S,P	BCF 800 in fish	Potential persistence in natural waters	0	1	Yes, rapid graded by matized studge ⁵	y accli-	
4-Bromophenyl phe- nyl ether		(V), S, P	Probably similar as chloroanalog	Probably similar as the chloroanalog	0	0	360	95(1)	
Bis(2-chloroethoxy) methane	IE	P,H	Probably not important	No evidence	0	0	25	> 60(1)	
Monocyclic aromatics									
Benzene	IE, R R-16	V,(\$),O	Low potential	Utilized as sole car- bon source by some soil microorganisms Pseudomonas putida, Achromobacter sp.	49	100	810,200	66–100 (7) 90–100 ⁶	Should be degraded

Table 1: continuation 4

			Table	1: continuation 4					
Name of the priority pollutant (EPA) ⁵	Occurrence/ import- ance 3,5,12,14, 16,18	Physical and chemical processes in the environ- ment ⁵	Bioaccumulation/ biomagnification ⁵	Biotransformation/ biodegradation in natural aquatic envi- ronments ⁵ or by cul- tures of organisms isolated from such en- vironments ¹¹	tic sew	ation/ lation s with domes- age mg/l of	Removal logical tr systems 10	reatment	Predicted biode- gradability for biological treat- ments ²⁵
					1st culture % degrad.	4th culture % degrad.	Concentration (µg/ml)	%removal (number of tests)	
Chlorobenzene	IE, R, LOC	V,S,O	BCF 1000-10,000	Very persistent, utilized by <i>Pseudomonas</i> putida when pregrown on toluene, via 3-chlorocatechol	89	100	15-1900	67-99(3)	Should be degraded
1,2-Dichlorobenzene	IE, R, LOC	V,S,O	High potential, BA probably as chlorobenzene	Very persistent, utilized by <i>Pseudomonas</i> putida when pregrown on toluene	45	29	1.8–250 Concentral sludge, E	rated in	Not degraded
1,3-Dichlorobenzene	R	V,S,O	As 1,2-isomer	As 1,2-isomer	59	35	3.1 Concentral sludge, E		Not degraded
1,4-Dichlorobenzene	IE, R, LOC	V,S,O	As 1,2-isomer	As 1,2-isomer	55	16	30-53	> 82(2)	Not degraded
1,2,4-Trichloroben- zene	IE, R	V,S,O	BCF 100-1000	As dichlorobenzenes	54	24	0.6-285	67-83(2)
Hexachlorobenzene	R	S	BCF 100–10,000, possibly BM	Very persistent, me- tabolized to penta- chlorophenol	56	5	0.75–10	0-47(2)	
Ethylbenzene	IE, R, LOC, R-20	V,(S),O	Low potential, possibly not im- portant	Utilized as a carbon source by some soil bacteria	≥ 90		29–882	78–99(4) 90–100 ⁶	Should be degraded
Nitrobenzene	LOC	(S), P	Low potential, possibly not im- portant	Slow degradation by soil bacteria	≥ 90		10 Yes ¹¹	0(1)	Should be degraded
Toluene	IE, R, LOC, R-15	V,S,O	Probably not important	Some soil bacteria (Pseudomonas putida etc.) can utilize toluene as the sole carbon source	≥ 90		70–680 Concentral		Should be degraded
2,4-Dinitrotoluene	IE,LOC	(V),S,P,O	Probably not important	Biodegraded by Azo- tobacter (slow), reduc- tion of the nitro group	77	27	2000	75(1)	
2,6-Dinitrotoluene	IE, LOC	(V), S, O, P	Probably not important	As 2,4-isomer	82	29	12-1900	~ 80(2)	
Phenol	IE, LOC R-35	(V),P,O	Probably not important	Utilized as the sole carbon source via catechol by <i>Pseudomonas putida</i> , yeasts etc.	≥ 90		25–440	41-99(5) Easily degraded
2-Chlorophenol	IE, R	P	No evidence	Slowly degraded by pure and mixed cultures: Pseudomonas, Arthrobacter	86	100	10	46(1)	Should be degraded
2,4-Dichlorophenol	IE, R	P	Probably not important	Readily biodegraded by soil bacteria: Pseu- domonas, Achromo- bacter, Arthrobacter etc.	≥ 90		13.3	> 25(1)	Should be degraded
2,4,6-Trichlorophenol	R	(V),P	Probably not important	Degraded by soil and sludge bacteria	≥ 90		703– 1000	36-99 (2) Should be de- graded
Pentachlorophenol	IE, R	S,P	BCF 100-1000	Pseudomonas sp. and Arthrobacter sp. ²¹ uti- lize PCP as the sole carbon source	19	100	34–5333 Inhibits digestion sludge ²⁵	anaerobic	Not degraded

Table 1: continuation 5

Name of the priority pollutant (EPA) ⁵	Occurrence/importance 3,5,12,14, 16,18	Physical and chemical processes in the environ- ment ⁵	Bioaccumulation/biomagnification ⁵	Biotransformation/biodegradation in natural aquatic environments or by cultures of organisms isolated from such environments 11	acclimation/ ri- degradation studies with settled domes- en- tic sewage and 5 mg/l of		acclimation/ degradation studies with settled domes- tic sewage and 5 mg/l of		acclimation/ degradation studies with settled domes- tic sewage and 5 mg/l of		acclimation/ degradation studies with settled domes- tic sewage and 5 mg/l of		acclimation/ degradation studies with settled domes tic sewage and 5 mg/l of		acclimation/ degradation studies with settled domes- tic sewage and 5 mg/l of		acclimation/ degradation studies with settled domes- tic sewage		Removal logical tr systems ¹⁶	eatment	Predicted biode- gradability for biological treat- ments ²⁵
					1st culture 5% degrad.	4th culture ?% degrad.	Concentration (µg/ml)	% removal (number of tests)													
2-Nitrophenol	IE	S,P,O	Probably not important	Very persistent, inhibits microbial growth in natural aquatic systems: some pure cultures utilize 2-NP as a sole carbon source	≥ 90		40	> 90(1)	Should be degraded												
4-Nitrophenol	IE	S,P,O	Probably not important	As the 2-isomer	≥ 90		13–90	23-99(3)	Should be degraded												
2,4-Dinitrophenol		S,P,O	Probably not important	As mononitrophenols	60	100	Not teste	d													
2,4-Dimethylphenol	IE	P,(O)	Probably not important	Persistent in natural aquatic systems, but readily degraded by activated sludge cul- ture as a sole carbon source	≥ 90		40	> 32(1)													
p-Chloro-m-cresol	IE	P	Low potential, toxic	Natural systems un- clear, effectively de- graded in sewage treatment plants	78	100	Not teste	ed .	Should be degraded												
4,6-Dinitro-o-cresol (DNOC)	IE	S,P,O	Probably not important, toxic	Degraded by pure cultures as the sole carbon source, natural systems un- clear	52	51	11	99(1)	Not degraded												
Phthalate esters																					
Dimethyl phthalate Diethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Bis(2-ethylhexyl) phthalate Butyl benzyl phthalate	IE IE IE IE, LOC	S,(V),(H)	BCF 100/10,000 no BM	Utilization as carbon source by Serratia, Penicillium lilacinuns, Enterobacter ae- rogenes in soil, water and activated sludge, hydrolysis by esterases, decarboxylation	≥ 90 ≥ 90 ≥ 90 0 0 ≥ 90	92 95	8-60 6-140 1-23 5000 1-102	25-60 0-98 0-68 0 37-83 0-91	Should be degraded, concentrated in sludge, BCF 6-172												
Polycyclic aromatic hy	drocarbons	ÿ																			
Acenaphthene Acenaphthylene Fluorene Naphthalene	IE IE, R	S,P,(V)	BCF 100–(10,000) short-term process	Naphthalene is utilized as the sole carbon source by a number of bacteria (Pseudomonas etc.),	≥ 90 ≥ 90 82 ≥ 90	77		0–95 0–80 94–99 0–64 70–90 ⁶	Should be degraded												
				generally PAH's with less than 4 rings are degraded by microbes			All PAH centrate: BCF 9–1	in sludge													
Anthracene Fluoranthene Phenanthrene	IE }	S,P,(V)	BCF 100-10,000	All these aromatics utilized by <i>Pseudo-monas</i> sp. as the sole carbon source	43 0 ≥ 90	92 100		> 60 092 091 45 for all H's	Should be degraded												
Benzo[a]anthracene Benzo[b]fluoranthene Benzo[k]fluoranthene Chrysene Pyrene	IE IE IE IE IE IE	S,(P),(V)	BCF ~ 10,000 short-term process	Probably slow, generally PAH's with 4 or less rings are degraded by microbes, metabolized via hydroxylation and ring-fission	Not tes Not tes 0 71		No data No data No data No data 2.3–3	16–67 (2)													

			Table	1: continuation 6					
Name of the priority pollutant (EPA) ⁵	Occurrence/importance 3,5,12,14, 16,18	chemical ort- processes in the environ-	biomagnification ⁵	Biotransformation/ biodegradation in natural aquatic envi- ronments ⁵ or by cul- tures of organisms isolated from such en- vironments ¹¹	and 5 mg/l of pollutant 16	logical tr systems ¹	reatment	Predicted biode- gradability for biological treat- ments ²⁵	
					1st cuiture % degrad. 4th culture % degrad.	Concentration (µg/ml)	% removal (number of tests)		
Benzo[ghi]perylene Benzo[a]pyrene Dibenzo[a, h] anthracene Indeno[1, 2, 3-cd] pyrene	IE IE S,P,(V)	S,P,(V)	BCF 100–100,000 short-term process	Probably very slow, benzo a pyrene with Pseudomonas sp., generally PAH's with	Not tested Not tested Not tested	No data 3 No data	33 BCF 44		
		J		d or more rings are degraded slowly by microorganisms but easily metabolized by multicellular organisms	Not tested	No data			
Nitrosamines and misco	ellaneous c	ompounds							
Dimethylnitrosamine		P	Probably not sig- nificant	Persistent, very slow degradation in sewage and soil	Not tested	2000	> 95		
Diphenylnitrosamine		(S), P	Possible, but importance not assessed	Seems to be more easily degraded than dialkylnitrosamines; synthesized and de- graded by intestinal bacteria	87 100	3–5.3	67-84(2)	
Di-n-propylnitros- amine		P	Probably not sig- nificant	Persistent, slow degra- dation by sewage and soil bacteria	27 50	0.5–11	0-99(2) BCF 10	0	
Benzidine	IE, R	S,P,O	No BA	Not easily degraded by microorganisms, inhibits sewage treat- ment	Not tested	4–12	0-41(2)		
3, 3'-Dichlo- robenzidine		S,P,(O)	BA in fish, toxic	Persistent, also in activated sludge	Not tested	No data			
1,2-Diphenyl- hydrazine (Hydrazobenzene)	IE	S,P,O	Highly probable no data	No evidence, metabolized in rats	80 77	14– 2000	0-100		

Outlook

Acrylonitrile

Most of the biodegradation data found in the literature are restricted to aerobic processes as most of the existing sewage or waste treatment facilities involve aerobic processes. However, some anaerobic waste treatment processes including methane formation from organic substrates such as waste sugars operate on a large-scale (sugar industries). With the present knowledge about biodegradation processes one would certainly prefer an aerobic treatment for large-scale chemical waste. Many of the priority pollutants listed in table 1 are leading organic chemicals and occur either in industrial effluents or in rivers such as the

LOC.

R-39

O

Probably not sig-

nificant

Degraded in sewage

sludge by Pseudo-

monas sp.

≥ 90

Rhine. The biodegradation data found in different papers are sometimes contradictory and sometimes rather incomplete. The data in both tables 1 and 2 indicate that there is still much work to be done in order to decrease environmental pollution and make waste treatment more efficient. Waste treatment facilities should probably become more specific and better adapted to defined effluents. This goal could be reached either by separate treatment for such defined wastes (process effluents etc.) combined with recycling of materials and energy or by inoculating classical sewage treatment facilities with specialized strains for difficult degradation problems.

 $70 - 90^6$

Table 2. Fate of synthetic organic chemicals in biological sewage treatment or in pure cultures (compounds not comprised in the EPA-List, table 1)

Abbreviations: R, pollutant detected in the Rhine river¹²

LOC, compound is among the 100 leading organic compounds (US-production in 1970: 2.4 · 10³ to 3.4 · 10⁶ tons/year)³

R-XY, rank among the top 50 in 1981 (US-market: 5.3 · 105 to 13 · 106 tons/year; the list also includes inorganic compounds)14

1. Compounds that are easily degraded in biological sewage treatment²⁵

Acetaldehyde (LOC) Butyraldehyde Ethyl acetate (LOC) Lauric acid Acetic acid (LOC, R-34) Butyric acid Ethylene glycol (LOC, R-29) Maleic acid/Maleic anhydride Acetone (LOC, R-38) Catechol Formic acid Oxalic acid Acrylic acid (LOC) Citric acid Glucoheptonic acid Palmitic acid Aniline (LOC) o-, m-, p-Cresol Gluconic acid Propionic acid Benzoic acid Decanoic acid Glycerol (LOC) Salicylic acid Ethanol (LOC, R-50) Benzyl alcohol Isobutyraldehyde Tartaric acid 1-Butanol (LOC) 2-Ethoxyethanol Lactic acid Urea (LOC, R-13)

Nearly all these compounds occur naturally (as intermediates in metabolic cycles or as catabolites) as well as being produced industrially and all are readily used by microorganisms as sources of carbon and energy.

2. Compounds that may be degraded if suitable acclimatization can be achieved²⁵

Polypropylene glycols (LOC) Acetonitrile Dichloroprop Maleic hydrazide Acrylamide Dichlorvos **MCPA** Polyvinyl acetate Adipic acid (LOC, R-49) Diethanolamine (LOC) Mecoprop Polyvinyl alcohol Alkanesulfonates Diethylamine Methanol (LOC, R-18) 1,2-Propandiol Alkylbenzenesulfonates (LOC) Diethylene glycol (LOC) 2-Methoxyethanol 2-Propanol Alkyl sulfates* Dimethylamine (LOC) Methyl acrylate Pyrethrum Allyl alcohol Dimethyldithiocarbamic acid Methylamine Pyridine Benzaldehyde Dimethylformamide Methylene bisthiocyanate Pyrogallol Benzenesulfonic acid Methyl metacrylate (LOC) Diuron Quinol Biphenyl 1,2-Epoxypropane 1-Methylnaphthalene Resorcinol 1, 3-Butadiene (R-32) Ethanolamine (LOC) 2-Methyl-2, 4-pentanediol Rotenone 2-Butanol Ethoxylated aliphatic acids 2-Methyl-2-pentanone Stearic acid 2-Methyl-2-propanol 2-Butoxyethanol Ethoxylated aliphatic alcohols Tetrahydrofuran Butyl acrylate (LOC) Ethoxylated alkyl amides Morpholine Thiourea Ethoxylated alkylamines Nitrilotriacetic acid o-, m-, p-Nitrotoluol ε-Caprolactam Thiram Chloroacetic acid Ethoxylated alkyl sulfates Toluene-2, 4-diisocyanate (LOC) o-, m-, p-Chloroaniline (R) Ethyl acrylate (LOC) Octadecylamine p-Toluenesulfonic acid o-, m-, p-Chlorobenzoic acid Ethylamine 1-Octanol o-, m-, p-Toluidine 1, 1, 2-trichloro-1, 2, 2-trifluoroethane 3-Chloropropene (R) Ethylenediamine (LOC) Oleic acid Chlorthiamid 2-Ethyl-1-hexanol (LOC) Paraformaldehyde Triethanolamine (LOC) Cyanuric acid (R) Fluoroacetamide Parathion (R) Triethylamine Cyclohexane (LOC, R-43) Fluoroacetic acid Pentaerythritol (LOC) Triethylene glycol (LOC) Cyclohexanol Formaldehyde (LOC, R-25) Phenylacetic acid Trimethylamine Cyclohexanone (LOC) Formamide o-Phenylenediamine Vinyl acetate (LOC, R-40) Cyclohexylamine Fumaric acid (LOC) o-, m-, p-Xylene (LOC, R-22, 30) Phloroglucinol 2,4-D (R) Glycollic acid Phthalic acid Xylenols (6 isomers) Dalapon Phthalic anhydride (LOC) Hexane 2,4-DB 4-Hydroxybenzenesulfonic acid Picloram * see also part II of this series of papers8 Dichlobenil Polyethylene glycols Malathion

The removal of these compounds may in some treatment facilities be incomplete, whereas in others it could be quite satisfactory. For acclimatization the initial concentration of these compounds might be very low and then increased rather slowly to the final level wanted for the treatment, which then should be held constant (fluctuations may result in the loss of acclimatization). The pollutant level held in acclimatized systems might in some cases be toxic to unacclimatized organisms. Not many of the compounds in this group occur free in nature, yet they are all potentially biodegradable.

3. Compounds resistant to biodegradation²⁵

p-Cresol

Alkylbenzenesulfonates (branched-chain) Chlorfenvinphos Hexamethylenetetramine (LOC) Alkylnaphthalenesulfonates Dichlorophen 2-Mercaptobenzothiazole 2,4-Dichloro-3,5-xylenol Atrazine Paraquat 1,2-Benzisothiazol-3-one Dimethylsulfoxide* Pentachlorophenyl laurate 1H-Benzotriazole Dinoseb Phenylmercuric acetate Bis (tributyltin)oxide (R) Diphenyl ether o-Phenylphenol* Picric acid Bromoxynil Diquat Ethoxylated alkylphenols tert-Butylphenol Quaternary ammonium compounds*** Carboxymethylcellulose (LOC) Ethylenediaminetetraacetic acid Simazine 2, 4, 5-T** Chlorendic anhydride Hexachlorophene

** pure cultures degrading these compounds have been described, *** see also part III of this series of papers Most of these chemicals are resistent to degradation and can be harmful to wildlife.

4. Aromatic compounds that are degraded by pure cultures (degradation of parent substrate)²⁴

Rapidly degraded Less rapidly degraded Slowly degraded Phenol o-, m-, p-Nitrophenol 2, 4-Dinitrophenol Catechol 2, 4, 6-Trinitrophenol 2, 6-Dimethylphenol Resorcinol 2-Chloro-4-nitrophenol 2,4-Dichlorophenol Quinol 2,6-Dichloro-4-nitrophenol 2, 4, 6-Trichlorophenol Phloroglucinol m-, p-Chlorophenol o-Cresol o-Phenylphenol m-Cresol Thymol

Phenol-adapted bacteria degraded a variety of hydroxyphenols, aminophenols, alkylphenols, arylphenols, chloronitrophenols, cresols, dimethylphenols, benzoic acids etc. at significant rates. For details see Tabak et al.²⁴.

- Acknowledgment. I would like to thank J.A.L. Auden and J. Nüesch for reviewing this manuscript.
- 1 The Global 2000 Report to the President Entering the Twenty-First Century. A report prepared by the Council on Environmental Quality and the Department of State, Study Director Gerald O. Barney, Blue Angel, Inc., 1738 Allied Street, Charlottesville, 1981.
- 2 Aiking, H., Kok, K., van Heerikhuizen, H., and van't Riet, J., Adaptation to cadmium by *Klebsiella aerogenes* growing in continuous culture proceeds mainly via formation of cadmium sulfide. Appl. environ. Microbiol. 44 (1982) 938-944.
- 3 Austin, G.T., The industrially significant organic chemicals, parts 1-9. Chemical Engineering 81 (1974) January 21, pp. 127-132; February 18, pp. 125-128; March 18, pp. 87-92; April 15, pp. 86-90; April 29, pp. 143-150; May 27, pp. 101-106; June 24, pp. 149-156; July 22, pp. 107-116; August 5, pp. 96-100.
- pp. 96-100.
 Bretscher, H., Waste disposal in the chemical industry, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds, pp. 65-74. Eds T. Leisinger, A.M. Cook, R. Hütter and J. Nüesch. Academic Press, London 1981.
- 5 Callahan, M., Slimak, M., Gabel, N., May, I., Fowler, C., Freed, R., Jennings, P., Durfee, R., Whitmore, F., Maestri, B., Mabey, W., Holt, B., and Gould, C., Water-related environmental fate of 129 priority pollutants. EPA Report No. 440/4-79-029a and b, 2 vols, NTIS 1979.
- 6 Chalmers, R., Amounts and effects of toxic materials discharged to sewers. Chem. Ind. (1981) April 18, pp.271-277.
- 7 Gasche, U.P., The pulp industry's wastes and effluents, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds, pp.53-63. Eds T. Leisinger, A.M. Cook, R. Hütter and J. Nüesch. Academic Press, London 1981.
- 8 Ghisalba, O., and Küenzi, M., Biodegradation and utilization of monomethyl sulfate by specialized methylotrophs. Experientia 39 (1983) 1257-1263.
- 9 Ghisalba, O., and Küenzi, M., Biodegradation and utilization of quaternary alkylammonium compounds by specialized methylotrophs. Experientia 39 (1983) 1264–1271.
- Hutzinger, O., and Veerkamp, W., Xenobiotic chemicals with pollution potential, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds, pp.3-45. Eds T. Leisinger, A.M. Cook, R. Hütter and J. Nüesch. Academic Press, London 1981.
- 11 Kobayashi, H., and Rittmann, B.F., Microbial removal of hazardous organic compounds. Environ. Sci. Technol. 16 (1982) 170A-183A.
- 12 Krisor, K., Neue Arbeiten zur Definierung der schwarzen Liste wassergefährdender Stoffe. Umwelt (1982) 234–235.

- 13 Lal, R., and Saxena, D.M., Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms, Microbiol. Rev. 46 (1982) 95-127.
- 14 Layman, P.L., Big-volume chemicals' output fell again in '81 -C&EN's Top 50 Chemical Products. C&EN 60 (No.18), pp. 10-13.
- pp. 10-13.

 15 Lindblow-Kull, C., Shrift, A., and Gherna, R.L., Aerobic, selenium-utilizing bacillus isolated from seeds of *Astragalus crotolariae*. Appl. environ. Microbiol. 44 (1982) 737-743.

 16 Patterson, J.W., and Kodukala, P.S., Emission & effluent
- 16 Patterson, J.W., and Kodukala, P.S., Emission & effluent control: Biodegradation of hazardous organic pollutants. CEP, April 1981, pp.48-55.
- Philipp, M., Krasnobajew, V., Zeyer, J., and Hütter, R., Fate of TCDD in microbial cultures and in soil under laboratory conditions, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds pp.221-233. Eds T. Leisinger, A.M. Cook, R. Hütter and J. Nüesch. Academic Press, London 1981.
- 18 Priority pollutant frequency listing tabulations and descriptive statistics. Internal EPA EGD memorandum, January 2, 1980.
- 19 Schmidt-Bleek, F., Testing and evaluation methods for environmental chemicals. Toxic. environ. Chem. 3 (1981) 265-290.
- 20 Schmidt-Bleek, F., and Wagenknecht, P., Umweltchemikalien. Chemosphere 8 (1979) 583-721.
- 21 Stanlake, G.J., and Finn, R.K., Isolation and characterization of a pentachlorophenol-degrading bacterium. Appl. environ. Microbiol. 44 (1982) 1421-1427.
- 22 Stucki, G., Brunner, W., Staub, D., and Leisinger, T., Microbial degradation of chlorinated C1 and C2 hydrocarbons, in: Microbial Degradation of Xenobiotics and Recalcitrant Compounds, pp. 131-137. Eds T. Leisinger, A.M. Cook, R. Hütter and J. Nüesch. Academic Press, London 1981.
- 23 Stucki, G., Gälli, R., Ebersold, H. R., and Leisinger, T., Dehalogenation of dichloromethane by cell extracts of *Hyphomicro-bium* DM2. Archs Microbiol. 130 (1981) 366-371.
- 24 Tabak, H.H., Chambers, C.W., and Kabler, P.W., Microbial metabolism of aromatic compounds. I.Decomposition of phenolic compounds and aromatic hydrocarbons by phenoladapted bacteria. J. Bact. 87 (1964) 910-919.
- adapted bacteria. J. Bact. 87 (1964) 910–919.

 Thom, N.S., and Agg, A.R., The breakdown of synthetic organic compounds in biological processes. Proc. R. Soc. Lond. B. 189 (1975) 347–357.

0014-4754/83/111247-11\$1.50 + 0.20/0 © Birkhäuser Verlag Basel, 1983

Biodegradation and utilization of monomethyl sulfate by specialized methylotrophs

by O. Ghisalba and M. Küenzi

Central Research Laboratories and Pharmaceuticals Division, Ciba-Geigy Ltd, CH-4002 Basel (Switzerland)

Methylations in organic syntheses are often carried out with dimethyl sulfate (DMS) as the methyl donor. Usually in such reactions, only one methyl group of DMS is transferred to the methyl accepting group (hydroxyl, mercapto, amino or imino group) and monomethyl sulfate (MS) is formed as a by-product in stoichiometric quantities. Therefore, the production of large-scale chemicals such as agrochemicals or dyestuffs involving methylations with dimethyl sulfate yields large volumes of monomethyl sulfate containing mother liquors. Only in rare cases can MS be used for further methylations. The recycling and

remethylation of MS to DMS is very expensive and the disposal of MS by hydrolysis can create security problems (formation of dimethyl ether by alkaline hydrolysis or formation of chloromethane by acid hydrolysis with HCl). One of the methods best suited for its disposal is the incineration of the MS-containing mother liquors. As the biodegradation of monomethyl sulfate would be an alternative to physical or chemical methods of disposal, we searched for MS degrading microorganisms in order to establish a biological waste treatment process for MS-containing mother liquors.